Designing Bulk Metallic Glass Matr ix Composites with High Toughness and Tensile Ductility
نویسنده
چکیده
Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that results in catastrophic failure during unconfined loading. In this thesis, bulk metallic glass matrix composites are designed with the combined benefits of high yield strengths and tensile ductility. This milestone is achieved by first investigating the length scale of the highly localized deformation, known as shear bands, that governs fracture in all metallic glasses. Under unconfined loading, a shear band grows to a certain length that is dependent on the fracture toughness of the glass before a crack nucleates and fracture occurs. Increasing the fracture toughness and ductility involves adding microstructural stabilization techniques that prevent shear bands from lengthening and promotes formation of multiple shear bands. To accomplish this, we develop in-situ formed bulk metallic glass matrix-composites with soft crystalline dendrites whose size and distribution are controlled through a novel semi-solid processing technique. The new alloys have a dramatically increased room-temperature ductility and a fracture toughness that appears to be similar to the toughest steels. Owing to their low modulus, the composites are therefore among the toughest known materials, a claim that has recently been confirmed independently by a fracture mechanics group. We extend our toughening strategy to a titanium-vanadium-based glass-dendrite composite system
منابع مشابه
Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit
Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic stra...
متن کاملDevelopment of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility.
The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughen...
متن کاملDesigning tensile ductility in metallic glasses
Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantita...
متن کاملGradient Confinement Induced Uniform Tensile Ductility in Metallic Glass
Metallic glass (MG) generally fails in a brittle manner under uniaxial tension loading at room temperature. The lack of plastic strain of MG is due to the severe plastic instability via the easily formed one dominate shear band. There have been several approaches to improve the ductility in MG, but achieving uniform tensile ductility for monolithic MG in bulk size remains a challenge. Here we d...
متن کاملSuperior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure
Over centuries, structural glasses have been deemed as a strong yet inherently 'brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses...
متن کامل